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A
n important task in computer-assisted
laparosurgery is to automatically and
densely reconstruct the surgical environ-

ment in 3D. The most successful approaches
are Simultaneous Localization and Mapping
(SLAM) and Structure-from-Motion (SfM).
Nevertheless SLAM and SfM can both fail for
several reasons. The ability to automatically
and quickly detect reconstruction failures is
therefore a crucial component in a robust sys-
tem. We present stereoscopic cross-validation
as the first solution for this task. This is de-
signed for SfM reconstruction, works with cali-
brated stereo laparoscopes, and requires no ad-
ditional sensors or interventional imaging.

1 Introduction and Contributions

Automatic, accurate and reliable 3D reconstruction
of anatomical structures from laparoscopic images is
important in many surgical navigation approaches
[8, 6, 2, 9, 16, 14, 13, 5]. The main motivation is to
enable image-based registration between detailed 3D
organ models built from CT or MR data, which in
turn enables Augmented Reality-based surgical guidance
[11, 7, 3, 4, 12, 1]. This guidance allows the surgeon to
see where hidden sub-surface structures such as vessels
and tumours are located in the laparoscopic images, by
fusing the registered organ model with the laparoscopic
video. The most successful reconstruction approaches
that handle ‘large’ scenes are SLAM and SfM. These
work by registrating points on the target’s surface on

multiple laparoscopic images and reconstructing them
in 3D space. They are compatible with current surgical
workflows, require no modification to current laparo-
scopic hardware, require no tracking sensors, and are
applicable for both monocular and stereo laparoscopes.
The key difference between SLAM and SfM is that
SLAM reconstructs the scene live, whereas SfM recon-
structs it offline after a short exploration phase typically
lasting under a minute. The advantage of SfM is that
it does not have real-time constraints, which allows
more powerful methods to be used to achieve greater
robustness [17]. Nevertheless, both approaches can fail
because of poor texture, poor image quality or very
strong illumination change. Our main contribution is
to provide an automatic, robust solution for detecting
SfM reconstruction failure using what we call stereo
cross-validation.

2 Method and Results

State-of-the-art monocular SfM implementations such
as Theia [15] take as input a set of 2D images (often
called keyframes), and returns a 3D model of the envi-
ronnement and a set of camera poses associated with
the keyframes. SfM reconstruction fails when there is
significant errors in the camera poses and/or 3D model.

We propose to detect these failures using an approach
inspired by cross-validation, which is a technique for
assessing how properties of a fitted model stay the same
even if we use an other approach to generate them. In
our case the model is the SfM reconstruction. We pro-
pose to withhold image data from the SfM process, and
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Figure 1: Our method applied to an exvivo porcine liver dataset using different keyframe sets

then use this withheld data to cross-validate the recon-
struction. For this to work effectively we must minimize
correlations between the withheld and non-withheld
data. Our strategy is to use a stereo laparoscope and
perform SfM with one of the camera’s images, then
validate the reconstruction with the second camera’s
images. The main idea is to compute for each point
of the reconstruction, the ratio between its depth and
its correponding depth value computed with a semi
dense stereo algorithm [18]. We then compute the dis-
tribution R of these ratios over all keyframes. A good
reconstruction generates a unimodal distribution with
low variance. For the stereo, an algorithm providing
sparse but reliable depthmap is prefered to avoid false
positives. From this depth ratio distribution, we can:

1. Reject or accept a reconstruction
2. Compute a reconstruction confidence score
3. Reject incorrect surface regions or keyframes cor-

responding to non principal modes in the depth
ratio distribution

4. Indicate where more exploration is needed (when
surface regions or keyframes have been rejected)

We focused on option 1 which we implemented in Algo-
rithm 1. This assumes the reconstructed model contains
a set of 3D points P (called a pointcloud).

Algorithm 1 SfM Verifier

function isCorrect(Keyframes K, PointCloud P)
R ←{}
for t ∈ [1, T ] do

D← stereo depthmap from Kt ∈ K
for pj ∈ P do

Project pj onto D and measure the depth
value d using bilinear interpolation
if (d is defined) then

Add
pj

d to R
n ← number of modes of R
σ ← variance of the primary mode
return (n == 1) ∧ (σ < τ)

A decision threshold τ is needed and set to 0.07
empirically. In the future, τ should be learned from

data gathered from the camera used.
We used for our experiment a challenging ex-vivo

dataset which has been tested in a preliminary work
by running state-of-the art SLAM [10]. Both monocu-
lar and stereo methods failed. We then tested Theia
SfM with keyframe sets sampled uniformly from an
exploration video (2 minutes in length). In Fig.1 some
example images are shown. Three different reconstruc-
tions were computed from three keyframe sets. In the
first two sets, 85 keyframes were used. For the first
reconstruction, there is a misalignment between a re-
gion on one of the lobes, which was caused by errors in
the laparoscope’s estimated 3D poses due to strongly
homogeneous texture. If left undetected, this type of
error can cause significant errors through a surgical
guidance pipeline. For the second reconstruction no
misalignement appeared. The third reconstruction used
the 857 images from the video as keyframes. Neverthe-
less, while the two first reconstructions took around 20
seconds to compute, the third reconstruction is about 50
times slower. Real time results are not always needed,
yet an overly slow reconstruction can be problematic.
Associated with reconstructions, we plot the histogram
showing the logarithmic frequency density distribution
of R. In the failure case, we see two modes which in-
dicates the reconstruction falsely estimates the liver’s
scale in some regions while on the successful case, only
one mode appears.

3 Conclusion and future work
Our method has been tested with Theia but it can also
be used with any monocular SfM algorithm if stereo
data are available. We presented a novel reconstruction
verification method using stereo information to detect
3D reconstruction failures. In future works, we will
evaluate this method in vivo.
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